Chapter 2 Applications of Cell Microencapsulation
نویسندگان
چکیده
The goal of this chapter is to provide an overview of the different purposes for which the cell microencapsulation technology can be used. These include immunoisolation of non-autologous cells used for cell therapy; immobilization of cells for localized (targeted) delivery of therapeutic products to ablate, repair, or regenerate tissue; simultaneous delivery of multiple therapeutic agents in cell therapy; spatial compartmentalization of cells in complex tissue engineering; expansion of cells in culture; and production of different probiotics and metabolites for industrial applications. For each of these applications, specific examples are provided to illustrate how the microencapsulation technology can be utilized to achieve the purpose. However, successful use of the cell microencapsulation technology for whatever purpose will ultimately depend upon careful consideration for the choice of the encapsulating polymers, the method of fabrication (cross-linking) of the microbeads, which affects the permselectivity, the biocompatibility and the mechanical strength of the microbeads as well as environmental parameters such as temperature, humidity, osmotic pressure, and storage solutions. The various applications discussed in this chapter are illustrated in the different chapters of this book and where appropriate relevant images of the microencapsulation products are provided. It is hoped that this outline of the different applications of cell microencapsulation would provide a good platform for tissue engineers, scientists, and clinicians to design novel tissue constructs and products for therapeutic and industrial applications.
منابع مشابه
Principles and Methods of Microencapsulation of Probiotic Microorganisms
Worldwide popularity of probiotic- microorganisms and their products on the one hand, and their general weak viability in food products (especially fermented types) as well as gastrointestinal conditions on the other hand, has encouraged researchers to innovate different methods of probiotics viability improvement. Microencapsulation of the probiotic cells is one of the newest and highly effic...
متن کاملLaser safety importance in clinical laser applications
Introduction: By introducing of laser systems and their continuous development, a new chapter of laser systems applications in a variety fields including research and clinical science in addition to the therapeutic, diagnostic applications were available for medical professionals in various fields. Most lasers emit radiation with intrinsic probable risks where in laser-tissue i...
متن کاملMicroencapsulation of Butyl Palmitate in Polystyrene-co-Methyl Methacrylate Shell for Thermal Energy Storage Application
MicroEncapsulated Phase Change Materials (MEPCM) are green materials which could be used for thermal energy saving applications in buildings as a non-pollutant method for environmental. PCMs could passively reduce peak cooling loads in hot seasons because of their high energy storage capacities at a constant temperature. Purpose of this paper is manufacturing Microencapsulated PCM (MPCM) pr...
متن کاملVibration Technology for Microencapsulation: The Restrictive Role of Viscosity
Microencapsulation employed in a broad range of applications, including those with a strict demand on standardization, requires to understand the limitations of respective encapsulation technologies. Among the most frequently used technologies, vibration technology has gained a significant interest due to high capacity and capability to produce uniform and monodisperse microspheres. In this con...
متن کاملMicroencapsulation Technology: A Powerful Tool for Integrating Expansion and Cryopreservation of Human Embryonic Stem Cells
The successful implementation of human embryonic stem cells (hESCs)-based technologies requires the production of relevant numbers of well-characterized cells and their efficient long-term storage. In this study, cells were microencapsulated in alginate to develop an integrated bioprocess for expansion and cryopreservation of pluripotent hESCs. Different three-dimensional (3D) culture strategie...
متن کامل